-捕鱼平台游戏

%pdf-1.6 %���� 1 0 obj <> endobj 450 0 obj <>stream 2019-05-15t16:52:18-08:00 primopdf http://www.primopdf.com 2019-05-15t16:55:51 08:00 2019-05-15t16:55:51 08:00 nitro pdf primopdf application/pdf c192056a_linekong 1..1 uuid:f3de2583-9982-448b-a895-18465551fb92 uuid:4c48426e-3aa7-4d4a-9816-8d34a554ed19 endstream endobj 3 0 obj <> endobj 451 0 obj <> endobj 460 0 obj <> endobj 461 0 obj <> endobj 462 0 obj <> endobj 463 0 obj <> endobj 2061 0 obj <> endobj 2062 0 obj <> endobj 2063 0 obj <> endobj 2064 0 obj <> endobj 2065 0 obj <> endobj 2066 0 obj <> endobj 2067 0 obj <> endobj 2068 0 obj <>/extgstate<>/font<>/procset[/pdf/text]/xobject<>>>/rotate 0/structparents 39/trimbox[23.5134 23.5134 443.022 618.77]/type/page>> endobj 2165 0 obj <>stream h��wyo7~�_���ak�%�ka���k}, �i���e�a�}��ڡ�jp jċ��ΐߜ>dg?_�w�>]ް�uv�����������>;���������{���'v���?���؛7us���d�u����x ��j�['�y�� �ٲ���3���e��ǵ��ܱ�m��s���#��䲮x�*.���9n��j��|��3k7y�γz�r�h"�䒫b΀�����44�.5��%xޔ_��˦�\�-��������sb��; ���:���g x���w�m��>t��1�/�: ���&�33����!��!���� �0�u��_��=��b�w �3��yfnɦs���_:�(dlq�qk���!��}���c nuu�a]�&��������]$xn��v��$�u�^u8a chp)�q�kfjc1*�r]a�u�n��z���6b����q�a��d��d��y���� >��p~�zξol�c)��h���:��m_�e�� �0�x�ȥ{e(c� k�l#���g��f��.[���z97�9jr1���詆d� ����\��" u˖ʉ&��f�;�읩�"n�m�� ,*����1�#r�p �`�$��[� m��&%'�� t.�^s'l{�k�^ѭ�ڣp���g<�"�p�e~ �b��>��n�t,jt�4�2r�z���fi�]�p�r��#f��9hi�. <��™�kk�tk0i�[/�e�|����4�� ��¼�x��u֐y ��?/� ��%sx\�qeq8.!��b�ő�������_� ���da����ջ���]� �"��9��qnô�tc�,j�hn%���}ǔߗs�b5��1k�es[.��>�#iw�vo�����il�:$����!��_|$�x$�x$ ; bu!�n) �dm$z�]'쥺ue fts�j<�']�z,�_nm��d�~njj��sum��x�@;�j��ljsdr2jj��dc// 4��njo�a80 �^��8d't� ,�2u$f��}9a/x�dr���q�{��"�w�ڛ�n�f�����e��1��hz���l&:be=���%rq�� �di��t� e�st=��00ti����g�e�#��4#�w���΅sv�}���=�we��e53j�plw���� ��� ���g���>�h�rus�t��u}s����z�]o��:\���f~q(rk�f��~��l� z��#�߶ô�����zi��q{��il��t�kq����쿦� �en��z��,�-d�a}z l.�ȴ�ev���7q(d���n���e�"��k����k���ƌ��;���y�ƿm��� �(���gd�z�a�η����g�1�$�!n ������6x�`���h�}i%�j������?� e� ��^��v�� [|8y�gq�;��� ����)�=n̊be� -5�l]k�.m�o)�{t��rf}��f�r���۔����>�py ����栠8��b�n2����y"��k�f�@i���ֆjj��`���jk�o�n)�j�c���u�m��y�`� �ktn���9�*u��� �x�� ���c< endstream endobj 459 0 obj <> endobj 2170 0 obj <>/extgstate<>/procset[/pdf/imagec]/xobject<>>>/subtype/form>>stream h�,�� �@���s����.��%:d !�l�޾��9�|3r6���g���������e�x n4�h��#28�-�z�ӈ,ˋ9�a?���º��/���n�"�{�˓���>n�ck��h�v�c��?y6��*�ax� 6ugr�)=��؄��> n�-� endstream endobj 2171 0 obj <>/extgstate<>>>/subtype/form>>stream h��a �0d�s�9a�c�i�y�j%'�[email protected]�����1�`x�ta�td-g���?8s��m�]��n����8�'-no���1�q��b2>�̵c:|t����pq�_�|�t endstream endobj 2168 0 obj <> endobj 2166 0 obj [/separation/pantone#202995#20c 2177 0 r<>] endobj 2177 0 obj [/lab<>] endobj 2176 0 obj <>stream ����adobed���c  ��  � ��� s!1aqa"q�2���b#�r��3b�$r���s���cs�5d'���6tdt���&� ��ef��v�u(�������eu��������fv��������7gwgw��������8hxhx��������)9iyiy��������*:jzjz����������?���͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛�&��ep_�ɺ��g�������lk6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٰ��n7?l��$�i�(��1��af��=?�>�dž�͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͆}�֚�쎿�%`q�e� ���c�dks��o��d��Œٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l|q�hq����n�l[ 5� ��ᑂōo\�i���������1�h �c��sl�o�����f͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l�h��s�y�\�-���>y �c),�n3,n2]cu����:�� �m�d�:��ⱦlٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͊�����5d����dcu��_�迯 �f��?vpoc��~b ���>��{v�`\ٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͇�4d?!�����n��mr�f͒�2��j���f����u�y͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l�9 �[�� _ _#z��ۀ�?^�͛6i�� �;�c]���fbf���oc��͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛ ��=y*z.�*��d��a��s!,z�flٳf�3���@�~ ��;�6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٲq���#հ� ���(a�#y�f͛6h�p���d�j�ё�n2!�6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6>4�q����gm���f��4�6�9�f͛6/k7��m�^b��\��͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͆�l>���.j1 �}-�2msf͛6lٲ_���fq� �����6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6j4�}8����2�p�;�w6lٳf͛�ihjx����fgq�dsf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l ���x�4�fw5�g�p��'6d�)}y��f͛6lٳ`�i}v�ɞl%�m��al�2��4��\�t�neg��$s6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛-t�� m�w�g�pxgas�pflَ��� ��di���6lٳf͛�jl��@cf�� ct�͛mf�hoㄷ;.��r�c4ac�͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6x�[m)�������n(���3e ����h���l �xw� ׅ�\<�h���͛6lٳf͛6(��d��j�'ڣa�:�rl� �%p�k�͉k�(�es��=lj|&e ��͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf�v�ot~�9$��km�����؜��"�i���6�}' ��y�bn#�6lٳf͛6lٳf͛6 � ��0� d���u ��*���l sh�c�����֞���_�6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l٩\�'촮_�lٳf͛6lٳf͛6lٳf͛6lج3��i�;mmg�_f�f��<1)-�_���\�:��� '�ksg�3f͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͖za垓_�_����aa��f͛�;��k��\ٳf͛6lٳf͛6lٳf͛6lٳf͛���s��>�>͛65�h(£#ךq��q�� �f͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳb��f> 3f͛6lٰ�u���s���a�6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͆�e��ܛ���6lٳf͛6d�9�y : ��6lٳf͛6lٳf͛6lٳf͛6lٳf͛ t��98�l��͛6lٳf"��->��}���a~lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͊c����&p� p��b��f͛6l؍ľ�� '�� 6lٳf͛6lٳf͛6lٳf͛6lٳf͛���;d�)�w�lٳf͛6��*p�<���s�csf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6h�^ ����sf͛6lٳa�?h���lٳf͛6lٳf͛6lٳf͛6lٳf͛6l�#���3�t�a�lٳf͛6l"��ݣ�p�6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٰe�xp�~l��(:e�͛6lٳe�t�.�o]�x�c6lٳf͛6lٳf͛6lٳf͛6lٳf͛6le?��7n�&9�f͛6lٱ� �=b���olk6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l�"��� ����f͛6lٳa^�q�'տve�f͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛%�mǯ�q�� ٳf͛6l�a���a�8e�6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6z�#a�h#�t(�1\ٳf͛6l����ó�l0lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳa��q�=c��flٳf͛6l w��~�f͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͆d^���o��ٳf͛6l�_�\� aնȟlٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͒� �� =���͛6lٳf�u�^��=�&lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l?�c�m�a�lٳf͛6l�_��e��6 6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf�2��z���^lٳf͛6l��qуx�%͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͒�-8d=��ٳf͛6l-��}�:��ȯlٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6kt���&�f��͛6lٳav�����c6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6m-�j=�flٳf͛(�;��^\}e�v�����f͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l�:���� �v9.͛6lٳf�z��y͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf� ��'(��ٳf͛6j�>��c�����lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l�)��}t�z���<ٳf͛6#p9#c��ٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lvw_�ɾlٳf͛�#�a�˙��=� ٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٰu��՜7n�,���q��6lٳc$�~y͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf�`�k��&��f͛6l#��x�hw���qg�����ӛ�q���vlٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͂�l���ӹ�u�#n�s�p�$�mϩ���:|��6lٳfƿc��.lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6>3ł�7sp>x�ٳf͉m(�k�� �c3=n'�f�a�o���‹�(?���#�3b(q��f͛6lٳf͛6lٳf͛6lٳf͛6lٳf�wg����xa�plb��b�'š����l���pt8�ٳf͉�h����͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳfɭ�se>ؾlٳf��u�lt~xm�6j4�}h��)�l sh�b��ǿf���s���ٳf͛6lٳf͛6lٳf͛6lٳf͛6loj�f�>��zi�k�v���?�2�q�}�#�6�t���0�6lٳ`k��l�f͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf�^�'8��� sf͛�]}u ��2 mw9y�a��/��2o�(��p��i�g�����h‡�6lٳf͛6lٳf͛6lٳf͛6l�`wa�v�io�]����pc�d{y��'��i�69x���2cip.�7~�<�6l�u�i�:x��f͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳfíz1o�h�f͍f =d/.m�r��f͛�oi��&�܅g|�ٱ �e�a��r�mk}��ㅹ�f͛6lٳf͛6lٳf͛6lٳ`�['����$��)k�s�3f͐˹}g-f̓�.������%��y�f�ί77�?danlٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lrl,u4�q2�^�͛�fu �\�o�?)͛6l�om�@v��h�h��h}�z�}��;6l ���}��?�gf�ksg�sf͛6lٳf͛6lٳf͛6lzfe4qs�֚h_�]φa�/6bi�%����o����t{�!͛6l�u�_��~���h�f�n'�\�-��k��6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6��6��t�%��[���^��c���"��f͛6l��s�i���$���� b�t��o��y�e� �i�8����֒s�q�� ȧ� 6lٳf͛6lٳf͛6l�gi�5��� e�a������_h��%��o�s����d��\<�h���͛6lٳd�h��r��o��nv�rl��^���`: �6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6l�q�5��l.��gڙ͛6lٳf͛6l^;���a����8>=a�1�g �q_�is`���_��f͛6lٳf͛6lٰe��ܚ �{a�1��na>����q��� �։� ��|��kվ�!5땛6lٳf͛6l�h�d'����m��s��ٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͆:[q�{�d��'�l��͖6���r>��x�x�f͛6lٳf͛y�:�f͛6lٳf͛6lٳ`��=8ԁ�6� -� 6lٳf͛6l=����i>��p�swo�ijf�n��"�8?#z����o�6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͛6lٱ{g��o�mr����x1�6n!5q�_}� ��voב�c� flٳf͛6lٳf͛6lٳf͛6lٳf͛6lٳf͖�x�u� ����ru�0� �n��q�� �ozj� w":�